Profit Maximizing Auctions

- Last time we saw that a profit maximizing seller will choose an inefficient auction.
Profit Maximizing Auctions

- Last time we saw that a profit maximizing seller will choose an inefficient auction.
- Will set a reserve price r higher than her cost c.

Today we will explore the effects of competition among sellers.

Jeffrey Ely

Competitive Markets
Profit Maximizing Auctions

- Last time we saw that a profit maximizing seller will choose an inefficient auction.
- Will set a reserve price r higher than her cost c.
- This is inefficient because the highest value \bar{v} may be between c and r.

If that happens then the reserve price will prevent a sale. But if $\bar{v} > c$ then efficiency implies that the good should be sold.
Profit Maximizing Auctions

- Last time we saw that a profit maximizing seller will choose an inefficient auction.
- Will set a reserve price r higher than her cost c.
- This is inefficient because the highest value \bar{v} may be between c and r.
- If that happens then the reserve price will prevent a sale.
Profit Maximizing Auctions

- Last time we saw that a profit maximizing seller will choose an inefficient auction.
- Will set a reserve price r higher than her cost c.
- This is inefficient because the highest value \bar{v} may be between c and r.
- If that happens then the reserve price will prevent a sale.
- But if $\bar{v} > c$ then efficiency implies that the good should be sold.
Profit Maximizing Auctions

- Last time we saw that a profit maximizing seller will choose an inefficient auction.
- Will set a reserve price r higher than her cost c.
- This is inefficient because the highest value \tilde{v} may be between c and r.
- If that happens then the reserve price will prevent a sale.
- But if $\tilde{v} > c$ then efficiency implies that the good should be sold.
- Today we will explore the effects of competition among sellers.
We will analyze the following model of a market.

- There are many sellers each with a single good up for sale.
We will analyze the following model of a market.

- There are many sellers each with a single good up for sale.
- Each seller i would incur a cost c_i from selling the good.
We will analyze the following model of a market.

- There are many sellers each with a single good up for sale.
- Each seller i would incur a cost c_i from selling the good.
- A seller who sells at price p earns profit $p - c_i$.
Competitive Market

We will analyze the following model of a market.

- There are many sellers each with a single good up for sale.
- Each seller i would incur a cost c_i from selling the good.
- A seller who sells at price p earns profit $p - c_i$.
- A seller who does not sell gets zero profit.
We will analyze the following model of a market.

- There are many sellers each with a single good up for sale.
- Each seller i would incur a cost c_i from selling the good.
- A seller who sells at price p earns profit $p - c_i$.
- A seller who does not sell gets zero profit.
- There are many buyers each demanding (at most) a single unit.
We will analyze the following model of a market.

- There are many sellers each with a single good up for sale.
- Each seller \(i \) would incur a cost \(c_i \) from selling the good.
- A seller who sells at price \(p \) earns profit \(p - c_i \).
- A seller who does not sell gets zero profit.
- There are many buyers each demanding (at most) a single unit.
- Each buyer \(j \) has a value \(v_j \) from a single unit.
We will analyze the following model of a market.

- There are many sellers each with a single good up for sale.
- Each seller i would incur a cost c_i from selling the good.
- A seller who sells at price p earns profit $p - c_i$.
- A seller who does not sell gets zero profit.
- There are many buyers each demanding (at most) a single unit.
- Each buyer j has a value v_j from a single unit.
- The buyer’s utility is $v_j - p$ if he buys at price p.
We will analyze the following model of a market.

- There are many sellers each with a single good up for sale.
- Each seller i would incur a cost c_i from selling the good.
- A seller who sells at price p earns profit $p - c_i$.
- A seller who does not sell gets zero profit.
- There are many buyers each demanding (at most) a single unit.
- Each buyer j has a value v_j from a single unit.
- The buyer’s utility is $v_j - p$ if he buys at price p.
- A buyer who does not buy has utility zero.
Competing English Auctions

We will analyze the following game.

- The sellers simultaneously set and announce reserve prices.

Think eBay.
We will analyze the following game.

- The sellers simultaneously set and announce reserve prices.
- All sellers will simultaneously run English auctions with their announced reserve prices.

Think eBay.
Competing English Auctions

We will analyze the following game.

- The sellers simultaneously set and announce reserve prices.
- All sellers will simultaneously run English auctions with their announced reserve prices.
- When the bidding ends in all auctions, the winners are declared and prices determined.

Think eBay.
Example with 2 sellers

We order the buyers’ values (decreasing order) and the sellers’ reserve prices (increasing order.)
Example with 2 sellers

The bidding will begin at the auction with the lower starting bid.
Example with 2 sellers

At this price, both bidders are willing to buy so they bid up the price.
Example with 2 sellers

This competition continues driving up the price until it reaches r_2, the reserve price in the other auction.
Example with 2 sellers

At this point, bidding becomes active on both auctions. Notice how this encourages the second seller to choose a higher reserve.
Example with 2 sellers

One bidder switches from the first auction to the second, bids r_2 there, and the bidding ends because there is no further competition.
Example with 2 sellers

If instead the values are lower, then the bidding will stop when the low-bidder drops out, before reaching the higher reserve price.
Example with 2 sellers

Notice how this encourages the second seller to choose a lower reserve.
Now suppose there are many buyers and sellers.
The downward sloping curve is the true schedule of costs. It indicates how many sellers have costs below every possible c.
Every seller will set a reserve price no higher than her cost. The schedule of reserve prices will therefore be above the cost curve.
The auction will drive bidding up to price p^* where the market clears.
At this point, Q^* buyers remain in the bidding and Q^* sellers have their reserve prices met.
But at this price there are Q' sellers with costs below p^*.
So there are $Q' - Q^*$ sellers who would make a profit by setting a lower reserve price. No seller would improve profits by increasing her reserve price.
Dominant Strategy

In a large market it is a dominant strategy for a seller to set her reserve price equal to her true cost, i.e. \(r = c \). Because by setting \(r > c \),

- When the market clearing price \(p^* \) is larger than \(r \) the reserve price is irrelevant.

Thus, in a large market, competition eliminates the inefficiency of profit-maximization and results in the first-best allocation.
In a large market it is a dominant strategy for a seller to set her reserve price equal to her true cost, i.e. \(r = c \). Because by setting \(r > c \),

- When the market clearing price \(p^* \) is larger than \(r \) the reserve price is irrelevant.
- When the market clearing price \(p^* \) is lower than \(c \), the reserve price is irrelevant.

Thus, in a large market, competition eliminates the inefficiency of profit-maximization and results in the first-best allocation.
Dominant Strategy

In a large market it is a dominant strategy for a seller to set her reserve price equal to her true cost, i.e. $r = c$. Because by setting $r > c$,

- When the market clearing price p^* is larger than r the reserve price is irrelevant.
- When the market clearing price p^* is lower than c, the reserve price is irrelevant.
- When the market clearing price is greater than c but lower than r, then

Thus, in a large market, competition eliminates the inefficiency of profit-maximization and results in the first-best allocation.
Dominant Strategy

In a large market it is a dominant strategy for a seller to set her reserve price equal to her true cost, i.e. \(r = c \). Because by setting \(r > c \),

- When the market clearing price \(p^* \) is larger than \(r \) the reserve price is irrelevant.
- When the market clearing price \(p^* \) is lower than \(c \), the reserve price is irrelevant.
- When the market clearing price is greater than \(c \) but lower than \(r \), then
 - A reserve price of \(r \) results in no sale and zero profit.

Thus, in a large market, competition eliminates the inefficiency of profit-maximization and results in the first-best allocation.
Dominant Strategy

In a large market it is a dominant strategy for a seller to set her reserve price equal to her true cost, i.e. $r = c$. Because by setting $r > c$,

- When the market clearing price p^* is larger than r the reserve price is irrelevant.
- When the market clearing price p^* is lower than c, the reserve price is irrelevant.
- When the market clearing price is greater than c but lower than r, then
 - A reserve price of r results in no sale and zero profit.
 - A reserve price of c would result in a sale and profit $p^* - c$.

Thus, in a large market, competition eliminates the inefficiency of profit-maximization and results in the first-best allocation.