A Dynamic Theory of Resource Wars

D. Acemoglu, M. Golosov, A. Tsyvinsky and P. Yared

Massachusetts Institute of Technology
Yale University
Yale University
Columbia University

Presented by Jorge Catepillan
Control of natural resources key determinant of war. 14 out of 20 major wars between 1878 and 1918 (Bakeless 1921)
Motivation

- Control of natural resources key determinant of war. 14 out of 20 major wars between 1878 and 1918 (Bakeless 1921)

- Westings (1986) cites Algerian War of Independence (1954-1962), Six Day War (1967) and the Chaco War (1932-1935), more recently Saddam invasion to Kuwait (1990)
Motivation

- Control of natural resources key determinant of war. 14 out of 20 major wars between 1878 and 1918 (Bakeless 1921)

- Westings (1986) cites Algerian War of Independence (1954-1962), Six Day War (1967) and the Chaco War (1932-1935), more recently Saddam invasion to Kuwait (1990)

- Klare argues that after the Cold War, resources will become a primary motivation for wars in the future.
Control of natural resources key determinant of war. 14 out of 20 major wars between 1878 and 1918 (Bakeless 1921)

Westings (1986) cites Algerian War of Independence (1954-1962), Six Day War (1967) and the Chaco War (1932-1935), more recently Saddam invasion to Kuwait (1990)

Klare argues that after the Cold War, resources will become a primary motivation for wars in the future.

Carter doctrine: "Any attempt by any outside force to gain control of the Persian Gulf ... will be repelled by any means necessary, including military force"
Main questions

- What is the effect of resource scarcity on the likelihood of war?
Main questions

- What is the effect of resource scarcity on the likelihood of war?

- How does the threat of war affect resource extraction and prices?
Main questions

- What is the effect of resource scarcity on the likelihood of war?

- How does the threat of war affect resource extraction and prices?

- How are these wars affected by the price structure?
Develop a dynamic model of resource wars.
Develop a dynamic model of resource wars.

Elasticity of demand is a key parameter to determine the incentives of war.
Results

- Develop a dynamic model of resource wars.

- Elasticity of demand is a key parameter to determine the incentives of war.

- Firms fail to internalize the impact of their extraction on military action, under inelastic demand → war incentives increase over time and war may become inevitable.
Develop a dynamic model of resource wars.

Elasticity of demand is a key parameter to determine the incentives of war.

Firms fail to internalize the impact of their extraction on military action, under inelastic demand \rightarrow war incentives increase over time and war may become inevitable.

In some situations regulations in the resource rich country can prevent war.
Results

- Develop a dynamic model of resource wars.

- Elasticity of demand is a key parameter to determine the incentives of war.

- Firms fail to internalize the impact of their extraction on military action, under inelastic demand → war incentives increase over time and war may become inevitable.

- In some situations regulations in the resource rich country can prevent war.

- Limited commitment implies that regulation might precipitate war even in situations where war would not have arisen under competitive markets.
Time is discrete, $t = 0, ..., +\infty$, discount factor $\beta \in (0, 1)$
Environment

- Time is discrete, $t = 0, \ldots, +\infty$, discount factor $\beta \in (0, 1)$

- Two goods, resource and consumption good. Two countries, A and S (resource rich country)
Environment

- Time is discrete, $t = 0, ..., +\infty$, discount factor $\beta \in (0, 1)$

- Two goods, resource and consumption good. Two countries, A and S (resource rich country)

- Government maximize inter temporal utility of citizens (mass 1 of identical households or representative household)
Environment

- Time is discrete, $t = 0, \ldots, +\infty$, discount factor $\beta \in (0, 1)$

- Two goods, resource and consumption good. Two countries, A and S (resource rich country)

- Government maximize inter temporal utility of citizens (mass 1 of identical households or representative household)

- In each period both countries are endowed with exogenous perishable amount of the consumption good, normalized to zero. S has e_0 units of resource in $t = 0$.
Instant utility of S

\[c^S_t \] (1)
Country S

- Instant utility of S

\[
 c^S_t
\]

- x_t (Amount extracted) is non storable, and e_t (reserve of resources) follows the law of motion

\[
e_{t+1} = e_t - x_t
\]
Country S

- Instant utility of S

\[c_t^S \] \hspace{1cm} (1)

- x_t (Amount extracted) is non storable, and e_t (reserve of resources) follows the law of motion

\[e_{t+1} = e_t - x_t \] \hspace{1cm} (2)

- Extraction is costless but limited, $0 \leq x_t \leq \bar{x}$
Instant utility of S

\[c_t^S \]

x_t (Amount extracted) is non storable, and e_t (reserve of resources) follows the law of motion

\[e_{t+1} = e_t - x_t \]

Extraction is costless but limited, \(0 \leq x_t \leq \bar{x} \)

Trade occurs with country A in different environments.
Country A

Instant utility of A

$$u(x^A_t) + c^A_t$$

(3)

$x^A_t \geq 0$ is consumption of the resource, $c^A_t \in \mathbb{R}$ of the consumption good and $u(.)$ with the usual properties.
Country A

- Instant utility of A

$$u(x_t^A) + c_t^A$$

(3)

$x_t^A \geq 0$ is consumption of the resource, $c_t^A \in \mathbb{R}$ of the consumption good and $u(\cdot)$ with the usual properties.

- Can also make two additional decisions, how much to arm $m_t \in [0, \bar{m}]$ and whether to declare war to S. We say that $f_t = 1$ if war has occurred before $T = t$.
Country A

- Instant utility of A

$$u(x_t^A) + c_t^A$$

$x_t^A \geq 0$ is consumption of the resource, $c_t^A \in \mathbb{R}$ of the consumption good and $u(.)$ with the usual properties.

- Can also make two additional decisions, how much to arm $m_t \in [0, \bar{m}]$ and whether to declare war to S. We say that $f_t = 1$ if war has occurred before $T = t$.

- Cost of m_t is $l(m_t)$ with $l'(.) > 0, l''(.) \geq 0, l(0) = 0$
Country A

- Instant utility of A

\[u(x^A_t) + c^A_t \] \hspace{1cm} (3)

\(x^A_t \geq 0 \) is consumption of the resource, \(c^A_t \in \mathbb{R} \) of the consumption good and \(u(\cdot) \) with the usual properties.

- Can also make two additional decisions, how much to arm \(m_t \in [0, \bar{m}] \) and whether to declare war to S. We say that \(f_t = 1 \) if war has occurred before \(T = t \).

- Cost of \(m_t \) is \(l(m_t) \) with \(l'(\cdot) > 0, l''(\cdot) \geq 0, l(0) = 0 \)

- Payoff from war \(w(m_t)e_t \). Where \(w_t(\cdot) \in [0, 1] \). In case of war, A gets \(w(m_t) \) and the rest is destroyed. \(w(0) = 0, w'(m) \xrightarrow{m \to \bar{m}} 0 \)
Payoff for A if it goes to war $V(w(m_t)e_t) - l(m_t)$ were:

\[V(w(m_t)e_t) = \max_{\{x_{t+k}, e_{t+k+1}\}} \sum_{k=0}^{\infty} \beta^k u(x_{t+k}) \]

(4)

\[e_{t+k+1} = e_{t+k} - x_{t+k} \]

(5)

\[e_1 = w(m_t)e_t - x_t \]

(6)

\[x_{t+k}, e_{t+k} \geq 0, \text{ for } k \geq 0 \]

(7)
Payoff for A if it goes to war $V(w(m_t)e_t) - l(m_t)$ were:

$$V(w(m_t)e_t) = \max_{\{x_{t+k}, e_{t+k+1}\}} \sum_{k=0}^{\infty} \beta^k u(x_{t+k})$$ (4)

$$e_{t+k+1} = e_{t+k} - x_{t+k}$$ (5)

$$e_1 = w(m_t)e_t - x_t$$ (6)

$$x_{t+k}, e_{t+k} \geq 0, \text{ for } k \geq 0$$ (7)

Under technical assumption, $V(.)$ is bounded from below. (they call this Lemma 1)
Payoff for A if it goes to war $V(w(m_t)e_t) - l(m_t)$ were:

$$V(w(m_t)e_t) = \max_{\{x_{t+k}, e_{t+k+1}\}^\infty_0} \sum_{k=0}^\infty \beta^k u(x_{t+k}) \quad (4)$$

$$e_{t+k+1} = e_{t+k} - x_{t+k} \quad (5)$$

$$e_1 = w(m_t)e_t - x_t \quad (6)$$

$$x_{t+k}, e_{t+k} \geq 0, \text{ for } k \geq 0 \quad (7)$$

Under technical assumption, $V(.)$ is bounded for below. (they call this Lemma 1)

Define $m(e_t)$ as the arg max of the payoff if A goes to war, then
Proposition

If \(-u'(x)/(xu''(x)) < 1\), then \(m^*(e) < 0\). Conversely, if \(-u'(x)/(xu''(x)) > 1\), then \(m^*(e) > 0\)
Unit measure of firms in country S. Each labeled i and with equal initial endowment. Extraction x_{it}^S sold at price p_t.
Unit measure of firms in country S. Each labeled i and with equal initial endowment. Extraction x_{it}^S sold at price p_t

Each firm’s problem is

$$\max_{\{x_{ti}\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t p_t x_{ti}^S$$

subject to

$$e_{it+1} = e_{it} - x_{it}^S \text{ if } f_t = 0$$
$$x_{ti}^S = 0 \text{ if } f_t = 1$$
$$x_{ti}^S, e_{it} \geq 0 \forall t \geq 0$$
Then, when $f_t = 0$, we have:

$$x_{ti}^S \begin{cases}
= 0 & \text{if } p_t < \beta p_{t+1} \mathbb{P}\{f_{t+1} = 0\} \\
\in [0, \min\{\bar{x}, e_{it}\}] & \text{if } p_t = \beta p_{t+1} \mathbb{P}\{f_{t+1} = 0\} \\
= \min\{\bar{x}, e_{it}\} & \text{if } p_t > \beta p_{t+1} \mathbb{P}\{f_{t+1} = 0\}
\end{cases}$$

(9)
Then, when $f_t = 0$, we have:

$$x^S_{ti} = \begin{cases}
0 & \text{if } p_t < \beta p_{t+1} \mathbb{P}\{f_{t+1} = 0\} \\
\in [0, \min\{\bar{x}, e_{it}\}]0 & \text{if } p_t = \beta p_{t+1} \mathbb{P}\{f_{t+1} = 0\} \\
= \min\{\bar{x}, e_{it}\} & \text{if } p_t > \beta p_{t+1} \mathbb{P}\{f_{t+1} = 0\}
\end{cases} \quad (9)$$

Country A will demand a solution to

$$\max_{x_t^A} u(x_t^A) - p_t x_t^A \quad (10)$$

Which gives us

$$u'(x_t^A) = p_t \quad (11)$$
Then, when \(f_t = 0 \), we have:

\[
x^S_{ti} \begin{cases}
0 & \text{if } p_t < \beta p_{t+1} \mathbb{P}\{f_{t+1} = 0\} \\
[0, \min\{\bar{x}, e_{it}\}]0 & \text{if } p_t = \beta p_{t+1} \mathbb{P}\{f_{t+1} = 0\} \\
\min\{\bar{x}, e_{it}\} & \text{if } p_t > \beta p_{t+1} \mathbb{P}\{f_{t+1} = 0\}
\end{cases}
\]

(9)

- Country A will demand a solution to

\[
\max_{x^A_t} u(x^A_{y_t}) - p_t x^A_t
\]

(10)

Which gives us

\[
u'(x^A_t) = p_t
\]

(11)

- Finally, market clearing implies

\[
x^S_t - x^A_t
\]

(12)
1. Country A chooses a level of armament $m_t \geq 0$.
Sequence of events

1. Country A chooses a level of armament $m_t \geq 0$.

2. Firms in country S commit to extraction and households in A to a consumption at prices p_t in the event country A does not attack S.
A Dynamic Theory of Resource Wars

Sequence of events

1. Country A chooses a level of armament $m_t \geq 0$.

2. Firms in country S commit to extraction and households in A to a consumption at prices p_t in the event country A does not attack S.

3. Country A decides whether or not to attack country S.

D. Acemoglu, M. Golosov, A. Tsyvinsky and P. Yared

12 /34
Sequence of events

1. Country A chooses a level of armament $m_t \geq 0$.

2. Firms in country S commit to extraction and households in A to a consumption at prices p_t in the event country A does not attack S.

3. Country A decides whether or not to attack country S.

4. Extraction and consumption takes place.
We want to find a Markov Perfect Competitive Equilibrium.
Equilibrium

- We want to find a Markov Perfect Competitive Equilibrium.
- Just have to focus when $f_{t-1} = 0$.
We want to find a Markov Perfect Competitive Equilibrium.

Just have to focus when $f_{t-1} = 0$.

Strategy φ of A, is a pair of functions, φ^m is a distribution over the possibles m given e_t. φ^f assign a probability of attacking as a function of $(e_t, m_t, p_t, x_t^S, x_t^A)$.

We want to find a Markov Perfect Competitive Equilibrium.

Just have to focus when \(f_{t-1} = 0 \).

Strategy \(\varphi \) of \(A \), is a pair of functions, \(\varphi^m \) is a distribution over the possibles \(m \) given \(e_t \). \(\varphi^f \) assign a probability of attacking as a function of \((e_t, m_t, p_t, x_t^S, x_t^A) \).

Call \(\gamma = \{e_t^*, m_t^*, p_t^*, x_t^{S*}, x_t^{A*}\}_{t=0}^{\infty} \) the values which would arise in case \(f_{t-1} = 0 \).
We want to find a Markov Perfect Competitive Equilibrium.

Just have to focus when $f_{t-1} = 0$.

Strategy φ of A, is a pair of functions, φ^m is a distribution over the possibles m given e_t. φ^f assign a probability of attacking as a function of $(e_t, m_t, p_t, x_t^S, x_t^A)$.

Call $\gamma = \{e_t^*, m_t^*, p_t^*, x_t^{S*}, x_t^{A*}\}_{t=0}^{\infty}$ the values which would arise in case $f_{t-1} = 0$.

Given γ, let $U_A(e)$ the payoff for country A starting with e. Then the period t payoff conditional on some choice (m_t, f_t) is

$$
(1 - f_t)(u(x_t^A) - \beta U_A(e_t^{*+1}) + f_t V(w(m_t)e_t^*) - l(m_t))
$$

(13)
Definition

A MPCE consist of φ, γ such that at each t:

1. φ^m maximizes 13 for each $e_t^* > 0$ in γ
2. φ^f maximizes 13 given m_t for every $(e_t^*, m_t^*, p_t^*, x_t^{S*}, x_t^{A*})$ with $e_t^* > 0$ in γ
3. γ satisfies 2, 9, 11, 12 with $P\{f_{t+1} = 1\} = \varphi^f(\ldots)$
4. If $e_t^* = 0$, then $\varphi_v(e) = \lim_{e \to 0} \varphi_v(e)$ where $\varphi_v(e)$ is the strategy that for country A that maximizes 13 for some cost of war $v > 0$.

First three condition are standard. Fourth condition is a refinement to avoid multiple equilibria.
A MPCE consist of φ, γ such that at each t:

1. φ^m maximizes 13 for each $e_t^* > 0$ in γ
2. φ^f maximizes 13 given m_t for every $(e_t^*, m_t^*, p_t^*, x_t^{S*}, x_t^{A*})$ with $e_t^* > 0$ in γ
3. γ satisfies 2, 9, 11, 12 with $\mathbb{P}\{f_{t+1} = 1\} = \varphi^f(\ldots)$
4. If $e_t^* = 0$, then $\varphi_v(e) = \lim_{e \to 0} \varphi_v(e)$ where $\varphi_v(e)$ is the strategy that for country A that maximizes 13 for some cost of war $v > 0$.

- First three condition are standard.
A MPCE consist of φ, γ such that at each t:

1. φ^m maximizes 13 for each $e^*_t > 0$ in γ
2. φ^f maximizes 13 given m_t for every $(e^*_t, m^*_t, p^*_t, x^S_t, x^A_t)$ with $e^*_t > 0$ in γ
3. γ satisfies 2, 9, 11, 12 with $\mathbb{P}\{f_{t+1} = 1\} = \varphi^f(\ldots)$
4. If $e^*_t = 0$, then $\varphi_v(e) = \lim_{e \to 0} \varphi_v(e)$ where $\varphi_v(e)$ is the strategy that for country A that maximizes 13 for some cost of war $v > 0$.

- First three condition are standard.
- Fourth condition is a refinement to avoid multiple equilibria.
Lemma (2)

An MPCE exists.
No Capacity Constraints ($\bar{x} = +\infty$)

Lemma (2)

An MPCE exists.

Proposition (2)

In any pure-strategy MPCE

- War can only occur at $t = 0$ along the equilibrium path.
- The equilibrium sequence of resources extraction satisfy
Lemma (2)

An MPCE exists.

Proposition (2)

In any pure-strategy MPCE

- War can only occur at \(t = 0 \) along the equilibrium path.
- The equilibrium sequence of resources extraction satisfy

\[
\beta u'(x_{t+1}) = u'(x_t) \tag{14}
\]

- In case \(A \) attacks in \(T \), \(S \) takes all the resources before.
A Dynamic Theory of Resource Wars

No Capacity Constraints ($\bar{x} = +\infty$)

Lemma (2)
An MPCE exists.

Proposition (2)
In any pure-strategy MPCE

- War can only occur at $t = 0$ along the equilibrium path.
- The equilibrium sequence of resources extraction satisfy

\[\beta u'(x_{t+1}) = u'(x_t) \] \hspace{1cm} (14)

- In case A attacks in T, S takes all the resources before.
- Fourth condition of MPCE allows A to attack only if $u(0) = -\infty$
Lemma (2)

An MPCE exists.

Proposition (2)

In any pure-strategy MPCE

- War can only occur at $t = 0$ along the equilibrium path.
- The equilibrium sequence of resources extraction satisfy

$$\beta u'(x_{t+1}) = u'(x_t)$$

(14)

- In case A attacks in T, S takes all the resources before.
- Fourth condition of MPCE allows A to attack only if
 \[u(0) = -\infty \]
- Then it is profitable to attack earlier.
Comments on Proposition 2

They call this effect *the unraveling of peace*.
Comments on Proposition 2

- They call this effect *the unraveling of peace.*
- Anticipation of future war encourages earlier extraction, and that causes earlier war.
They call this effect *the unraveling of peace*.

Anticipation of future war encourages earlier extraction, and that causes earlier war.

Firms in S fail to internalize their impact on future war decisions.
Comments on Proposition 2

- They call this effect *the unraveling of peace*.
- Anticipation of future war encourages earlier extraction, and that causes earlier war.
- Firms in S fail to internalize their impact on future war decisions.
- Lack of commitment of A also plays a role.
Comments on Proposition 2

- They call this effect the *unraveling of peace*.
- Anticipation of future war encourages earlier extraction, and that causes earlier war.
- Firms in S fail to internalize their impact on future war decisions.
- Lack of commitment of A also plays a role.
- Imagine it is optimal for A to go to war at some point T, and consumer there are strictly better at 0 under permanent peace that under immediate war. A could commit to not going to war in the future. This would make everyone happier.
Comments on Proposition 2

- They call this effect *the unraveling of peace*.
- Anticipation of future war encourages earlier extraction, and that causes earlier war.
- Firms in S fail to internalize their impact on future war decisions.
- Lack of commitment of A also plays a role.
- Imagine it is optimal for A to go to war at some point T, and consumer there are strictly better at 0 under permanent peace that under immediate war. A could commit to not going to war in the future. This would make everyone happier.
- Second part, resource extraction is the same that under no war. (hotelling rule)
Reminder, CRRA or iso-elastic preferences are such that

\[u(x) = \frac{x^{1-1/\sigma} - 1}{1 - 1/\sigma} \]
Reminder, CRRA or iso-elastic preferences are such that

\[u(x) = \frac{x^{1-1/\sigma} - 1}{1 - 1/\sigma} \]

In this case, proposition 2 is generalized to any MPCE (also with mixed strategies), given \(\sigma \neq 1 \).
Reminder, CRRA or iso-elastic preferences are such that

$$u(x) = \frac{x^{1-1/\sigma} - 1}{1 - 1/\sigma}$$

In this case, proposition 2 is generalized to any MPCE (also with mixed strategies), given $\sigma \neq 1$.

Depending on σ, war will occur if the initial endowment of resources is big enough ($\sigma > 1$), or if A can get enough of e in case of a war.
Proposition (4)

Suppose $u(x)$ is CRRA and $\sigma \neq 0$,

1. Suppose $\sigma > 1$, then there exist $\hat{\epsilon} > 0$ such that if $e_0 < \hat{\epsilon}$, then the unique MPCE has permanent peace, and if $e_0 > \hat{\epsilon}$ in any MPCE war occurs in period 0 with probability 1.

2. Suppose $\sigma < 1$, then there exist $\hat{w} < 1$ such that if $\lim_{m \to \tilde{m}} w(m) < \hat{w}$, then the unique MPCE has permanent peace, and if $\lim_{m \to \tilde{m}} w(m) > \hat{w}$ in any MPCE war occurs in period 0 with probability 1.
If demand is inelastic, then spending is increasing over time, if A gets enough of the resources, then is optimal to go to war.
If demand is inelastic, then spending is increasing over time, if \(A \) gets enough of the resources, then it is optimal to go to war.

If demand is elastic, then spending is decreasing over time, if \(e_0 \) is big enough, then it is optimal to go to war.
If demand is inelastic, then spending is increasing over time, if A gets enough of the resources, then it's optimal to go to war.

If demand is elastic, then spending is decreasing over time, if e_0 is big enough, then it's optimal to go to war.

This conclusion does not depend on the cost of war.
If demand is inelastic, then spending is increasing over time, if \(A \) gets enough of the resources, then it is optimal to go to war.

If demand is elastic, then spending is decreasing over time, if \(e_0 \) is big enough, then it is optimal to go to war.

This conclusion does not depend on the cost of war.

Case \(\sigma = 1 \) has multiple eq. in particular, randomizing going to war in every period.
Back again to the general utility case, then

Proposition (5)

Suppose there exist some $\bar{\sigma} < 1$ such that $-u'(x)/(xu''(x)) \leq \bar{\sigma} \forall x > 0$, and suppose that $\lim_{m \to \bar{b}} w(m)$ is sufficiently close to 1. Then

1. An MPCE exists
2. In any MPCE, war occurs with probability 1 before some $T < \infty$, and $x_t = \bar{x}$ if war has not yet occurred.
3. If $\bar{x} \geq e_o$ then war occurs in period 0.
Intuition similar as before.
Comments on proposition 5

- Intuition similar as before.

- Demand inelastic \implies spending increasing over time \implies optimal to declare war at some point.
Comments on proposition 5

- Intuition similar as before.

- Demand inelastic \Rightarrow spending increasing over time \Rightarrow optimal to declare war at some point.

- Firms can not extract everything if they anticipate war \Rightarrow may delay onset of war.
Intuition similar as before.

Demand inelastic \rightarrow spending increasing over time \rightarrow optimal to declare war at some point.

Firms can not extract everything if they anticipate war \rightarrow may delay onset of war.

However, firms extract faster than they would otherwise.
Intuition similar as before.

Demand inelastic \Rightarrow spending increasing over time \Rightarrow optimal to declare war at some point.

Firms can not extract everything if they anticipate war \Rightarrow may delay onset of war.

However, firms extract faster than they would otherwise.

Mixed incentives for A, earlier war avoids rapid depletion of resources. Later war to postpone cost of armaments and resources. The time of war is not monotonic on T.
Competitive eq. sub optimal for S:

Firms don’t internalize (last case) that increase in price increases incentives to go to war. It might be beneficial to regulate prices and quantities. However, they show that even though this externalities go away, we have a new one due to the lack of commitment of S. Focus on price and quantity regulation, not in cases in which S can only regulate one of those.
Competitive eq. sub optimal for S:
- Each producer, by extracting more, reduces the price.
Competitive eq. sub optimal for S:
- Each producer, by extracting more, reduces the price.
- Firms don’t internalize (last case) that increase in price increases incentives to go to war.
Monopolistic Environment

- Competitive eq. sub optimal for S:
 - Each producer, by extracting more, reduces the price.
 - Firms don’t internalize (last case) that increase in price increases incentives to go to war.

- It might be beneficial to regulate prices and quantities.
Competitive eq. sub optimal for S:
- Each producer, by extracting more, reduces the price.
- Firms don’t internalize (last case) that increase in price increases incentives to go to war.

It might be beneficial to regulate prices and quantities.

However, they show that even though this externalities go away, we have a new one due to the lack of commitment of S.
Competitive eq. sub optimal for S:
- Each producer, by extracting more, reduces the price.
- Firms don’t internalize (last case) that increase in price increases incentives to go to war.

It might be beneficial to regulate prices and quantities.

However, they show that even though this externalities go away, we have a new one due to the lack of commitment of S.

Focus on price and quantity regulation, not in cases in which S can only regulate one of those.
1. Country A’s government chooses level of armament m_t.

Sequence of Events
Sequence of Events

1. Country A’s government chooses level of armament m_t

2. Country S’s government makes a take-it-or-leave-it offer z_t to country A. Exchange x_t^o for c_t^o units.
Sequence of Events

1. Country A’s government chooses level of armament m_t.

2. Country S’s government makes a take-it-or-leave-it offer z_t to country A. Exchange x_t^0 for c_t^0 units.

3. Country A’s government decides whether or not to accept the offer. If declines, it can declare war.
Sequence of Events

1. Country A’s government chooses level of armament m_t.

2. Country S’s government makes a take-it-or-leave-it offer z_t to country A. Exchange x_t^0 for c_t^0 units.

3. Country A’s government decides whether or not to accept the offer. If declines, it can declare war.

4. Extraction and consumption takes place.
Equilibrium

We want to find a Markov Perfect Competitive Equilibrium (In this case, Markov Perfect Monopolistic Equilibrium).
We want to find a Markov Perfect Competitive Equilibrium (In this case, Markov Perfect Monopolistic Equilibrium).

Just have to focus when $f_{t-1} = 0$.
We want to find a Markov Perfect Competitive Equilibrium (In this case, Markov Perfect Monopolistic Equilibrium).

Just have to focus when $f_{t-1} = 0$.

Strategy for A $\phi_A = \{\phi^m_A, \phi^a_A, \phi^f_A\}$ of A, where, ϕ^m_A is a distribution over the possibles m given e_t. ϕ^a_A assign an acceptance decision as a function of (e_t, m_t, x^o_t, c^o_t), ϕ^f_A assign a probability of attacking as a function of $(e_t, m_t, x^o_t, c^o_t, a_t)$, and it is zero if $a_t = 1$.
We want to find a Markov Perfect Competitive Equilibrium (In this case, Markov Perfect Monopolistic Equilibrium).

Just have to focus when \(f_{t-1} = 0 \).

Strategy for \(A \) \(\phi_A = \{ \phi^m_A, \phi^a_A, \phi^f_A \} \) of \(A \), where, \(\phi^m_A \) is a distribution over the possibles \(m \) given \(e_t \). \(\phi^a_A \) assign an acceptance decision as a function of \((e_t, m_t, x^o_t, c^o_t) \), \(\phi^f_A \) assign a probability of attacking as a function of \((e_t, m_t, x^o_t, c^o_t, a_t) \), and it is zero if \(a_t = 1 \).

Strategy for \(S \), \(\phi_S = \{ \phi^x_A, \phi^c_A \} \) and \(\phi_S \) function of \((e_t, m_t) \).
A MPME is a pair \(\{ \phi_S, \phi^m_A \} \) where:

1. Given \(\phi_S, \phi^m_A \) maximize welfare for \(A \) for any \(e_t, \phi^a_A \) maximize welfare for \(A \) for every \((e_t, m_t, x^0_t, c^0_t) \), and \(\phi^f_A \) maximize welfare for \(A \) for every \((e_t, m_t, x^0_t, c^0_t, a_t) \) conditional on \(f_t = 0 \) if \(a_t = 1 \).

2. Given \(\phi_A, \phi_S \) maximize welfare for \(S \) for any \((e_t, m_t) \)
S will have two kind of strategies, either leave A indifferent between war or not, or just make A going to war.
S will have two kinds of strategies, either leave \(A \) indifferent between war or not, or just make \(A \) going to war.

Therefore, \(A \) will always set the amount of armament that maximize its continuation value if goes to war.
S will have two kind of strategies, either leave A indifferent between war or not, or just make A going to war.

Therefore, A will always set the amount of armament that maximize its continuation value if goes to war.

Under this conditions an MPME exist, and we have:
S will have two kind of strategies, either leave A indifferent between war or not, or just make A going to war.

Therefore, A will always set the amount of armament that maximize its continuation value if goes to war.

Under this conditions an MPME exist, and we have:
S will have two kind of strategies, either leave A indifferent between war or not, or just make A going to war.

Therefore, A will always set the amount of armament that maximize its continuation value if goes to war.

Under this conditions an MPME exist, and we have:

Proposition (6)

In any MPME if $f_{t+1} = 0$ then

\[\beta u'(x_{t+1}) > u'(x_t) \text{ if } m^*(e_{t+1}) > 0 \] \hspace{1cm} (15)

\[\beta u'(x_{t+1}) < u'(x_t) \text{ if } m^*(e_{t+1}) < 0 \] \hspace{1cm} (16)
Corollary

In any MPME, whenever $f_{t+1} = 0$, we have that:

\[-\frac{u'(x)}{xu''(x)} > (<)1 \text{ for all } x, \text{ then } \beta u'(x) > (<)u'(x) \]
Corollary

In any MPME, whenever $f_{t+1} = 0$, we have that:

$$\text{if } -\frac{u'(x)}{x u''(x)} > (<)1 \text{ for all } x, \text{ then } \beta u'(x) > (<)u'(x)$$

How the shadow prices evolve depends on the elasticity.
Corollary

In any MPME, whenever $f_{t+1} = 0$, we have that:

$$\text{if } -\frac{u'(x)}{xu''(x)} > (<)1 \text{ for all } x, \text{ then } \beta u'(x) > (<)u'(x)$$

- How the shadow prices evolve depends on the elasticity.
- When demand is inelastic, value of the resource is increasing. Then Country A invest more in arms. This makes S to extract less to reduce incentives to arm.
Corollary

In any MPME, whenever \(f_{t+1} = 0 \), we have that:

\[
\text{if } - \frac{u'(x)}{xu''(x)} > (<)1 \text{ for all } x, \text{ then } \beta u'(x) > (<)u'(x)
\]

- How the shadow prices evolve depends on the elasticity.
- When demand is inelastic, value of the resource is increasing. Then Country A invest more in arms. This makes \(S \) to extract less to reduce incentives to arm.
- When demand is elastic, value of the resource is decreasing. Then Country A armaments are decreasing, this makes \(S \) to extract more to reduce incentives to arm.
Corollary

In any MPME, whenever $f_{t+1} = 0$, we have that:

$$-u'(x)/(xu''(x)) > (\leq)1 \text{ for all } x, \text{ then } \beta u'(x) > (\leq)u'(x)$$

- How the shadow prices evolve depends on the elasticity.
- When demand is inelastic, value of the resource is increasing. Then Country A invest more in arms. This makes S to extract less to reduce incentives to arm.
- When demand is elastic, value of the resource is decreasing. Then Country A armaments are decreasing, this makes S to extract more to reduce incentives to arm.
Corollary

In any MPME, whenever $f_{t+1} = 0$, we have that:

$$- \frac{u'(x)}{xu''(x)} > (>) 1 \text{ for all } x,$$

then $\beta u'(x) > (>) u'(x)$

- How the shadow prices evolve depends on the elasticity.
- When demand is inelastic, value of the resource is increasing. Then Country A invest more in arms. This makes S to extract less to reduce incentives to arm.
- When demand is elastic, value of the resource is decreasing. Then Country A armaments are decreasing, this makes S to extract more to reduce incentives to arm.
Proposition (7)

Suppose \(u(x) \) is CRRA, then in any MPME,

1. War is avoided when \(\sigma < 1 \) and
 \[
 -\beta l(\bar{m}) > \psi(1 - \beta)
 \]

2. War can be avoided when war necessarily occurs in an MPCE.

3. War can occur with probability 1 along the equilibrium path if \(\sigma < 1 \).

4. War can occur with probability 1 along the equilibrium path when war is necessarily avoided in the MPCE.
If war is too costly for country S, then it can be avoided.
If war is too costly for country S, then it can be avoided.

Second part is a consequence of the first one.
1. If war is too costly for country S, then it can be avoided.

2. Second part is a consequence of the first one.

3. The opposite of the previous results can also be true. This happens when the cost of war is not high for S. The key is that here A has to invest even if there is no war. S can not commit to make offers unless it has a threat of war. Then S compensates A for future cost of armament. If these costs are increasing, at some point S could prefer going to war.
1. If war is too costly for country S, then it can be avoided.

2. Second part is a consequence of the first one.

3. The opposite of the previous results can also be true. This happens when the cost of war is not high for S. The key is that here A has to invest even if there is no war. S can not commit to make offers unless it has a threat of war. Then S compensates A for future cost of armament. If these costs are increasing, at some point S could prefer going to war.

4. Two opposite forces. First, S controls the extraction, then the externalities of the competitive firms. Second, introduces another strategic interaction, because it can not commit to good terms if A is not armed.
Proposition 6 holds, but now with $x_t, x_{t+1} < \bar{x}$.

Corollary only changes because instead of having it for all x_t, the first one holds only after some $T < \infty$. Intuition is the same.
Proposition 6 holds, but now with $x_t, x_{t+1} < \bar{x}$.

Corollary only changes because instead of having it for all x_t, the first one holds only after some $T < \infty$.
Proposition 6 holds, but now with $x_t, x_{t+1} < \bar{x}$.

Corollary only changes because instead of having it for all x_t, the first one holds only after some $T < \infty$.

Intuition is the same.
Case Studies

Two cases that illustrate the insights of this paper (role of scarcity, elasticity, price regulation)

1. War of the Pacific (Perú - Bolivia vs Chile)
Case Studies

Two cases that illustrate the insights of this paper (role of scarcity, elasticity, price regulation)

1. War of the Pacific (Perú - Bolivia vs Chile)
 - Primary cause -> deposits of nitrates, guano and saltpeter.
Two cases that illustrate the insights of this paper (role of scarcity, elasticity, price regulation)

1. War of the Pacific (Perú - Bolivia vs Chile)
 - Primary cause -> deposits of nitrates, guano and saltpeter.
 - after 1840, high value (used on plant growth and explosives)
Two cases that illustrate the insights of this paper (role of scarcity, elasticity, price regulation)

1. War of the Pacific (Perú - Bolivia vs Chile)
 - Primary cause -> deposits of nitrates, guano and saltpeter.
 - after 1840, high value (used on plant growth and explosives)
 - Value of the reserve comparable to the value of oil reserves in the Gulf (Sicotte et al, 2009)
Two cases that illustrate the insights of this paper (role of scarcity, elasticity, price regulation)

1. **War of the Pacific (Perú - Bolivia vs Chile)**
 - Primary cause -> deposits of nitrates, guano and saltpeter.
 - After 1840, high value (used on plant growth and explosives)
 - Value of the reserve comparable to the value of oil reserves in the Gulf (Sicotte et al, 2009)
 - Inelastic demand (Mathews 1970)
Two cases that illustrate the insights of this paper (role of scarcity, elasticity, price regulation)

1. War of the Pacific (Perú - Bolivia vs Chile)
 - Primary cause -> deposits of nitrates, guano and saltpeter.
 - After 1840, high value (used on plant growth and explosives)
 - Value of the reserve comparable to the value of oil reserves in the Gulf (Sicotte et al, 2009)
 - Inelastic demand (Mathews 1970)
 - Monopolization was attempted. Share of revenues, common system of regulation.
Case Studies

Two cases that illustrate the insights of this paper (role of scarcity, elasticity, price regulation)

1. War of the Pacific (Perú - Bolivia vs Chile)
 - Primary cause -> deposits of nitrates, guano and saltpeter.
 - After 1840, high value (used on plant growth and explosives)
 - Value of the reserve comparable to the value of oil reserves in the Gulf (Sicotte et al, 2009)
 - Inelastic demand (Mathews 1970)
 - Monopolization was attempted. Share of revenues, common system of regulation.
 - Increase of price related to increase in militar expenditure.
Case Studies

1. Cedar Wars (Kasoff, 1997)

In the Ancient Lebanon, between Egyptians, Mesopotamian, Phoenicians. Cedars of Ancient Lebanon were important and natural resource, and appear to have been a major factor in the Cedar Wars. Not only the value, but also potential future scarcity. During 734, and 733-732 BC, Assyrian King, who controlled Phoenicia, imposed a trade embargo to Egypt. Cedars were impossible to substitute, so Egypt supported rebellions against Assyrian. They interpret this as a way to change the terms of trade.
Cedar Wars (Kasoff, 1997)

- In the Ancient Lebanon, between Egyptians, Mesopotamian, Phoenicians.
Case Studies

1. Cedar Wars (Kasoff, 1997)

- In the Ancient Lebanon, between Egyptians, Mesopotamian, Phoenicians.

- Cedars of Ancient Lebanon were important and natural resource, and appear to have been a major factor in the Cedar Wars.
Cedar Wars (Kasoff, 1997)

- In the Ancient Lebanon, between Egyptians, Mesopotamian, Phoenicians.

- Cedars of Ancient Lebanon were important and natural resource, and appear to have been a major factor in the Cedar Wars

- Not only the value, but also potential future scarcity.
Cedar Wars (Kasoff, 1997)

- In the Ancient Lebanon, between Egyptians, Mesopotamian, Phoenicians.

- Cedars of Ancient Lebanon were important and natural resource, and appear to have been a major factor in the Cedar Wars.

- Not only the value, but also potential future scarcity.

- During 734, and 733-732 BC, Assyrian King, who controlled Phoenicia, imposed a trade embargo to Egypt. Cedars were impossible to substitute, so Egypt supported rebellions against Assyrian. They interpret this as a way to change the terms of trade.
Extensions

1. Inter-country competition
Extensions

1. Inter-country competition

2. Armament in defense
Extensions

1. Inter-country competition

2. Armament in defense

3. Domestic political economy issues.
Conclusions

1. If the resource is extracted by price-taking firms, then fail to internalize their effect on future military action by the other country. If demand is inelastic, this accelerates war.
Conclusions

1. If the resource is extracted by price-taking firms, then fail to internalize their effect on future military action by the other country. If demand is inelastic, this accelerates war.

2. Externalities can be internalize by the government. If demand is inelastic, it can slow down extraction so it slows down the rise in armaments. In the other case, can reduce armaments costs by extracting more.
Conclusions

1. If the resource is extracted by price-taking firms, then fail to internalize their effect on future military action by the other country. If demand is inelastic, this accelerates war.

2. Externalities can be internalize by the government. If demand is inelastic, it can slow down extraction so it slows down the rise in armaments. In the other case, can reduce armaments costs by extracting more.

3. However, lack of commitment makes the resource rich country to pay the future costs of armaments to prevent war, making war more likely to occur.