Swords or Plowshares? A Theory of the Security of Claims to Property

H.I. Grossman and M. Kim

Northwestern University

February 28, 2012
Outline

1. Introduction/Motivation
2. The Model
3. Results
4. Extension
5. Conclusion
Objectives

Big objective: Develop a general equilibrium model for allocating between appropriative and productive activities.

- Differentiate between offensive and defensive resources
- Determine parameters for which there exists non-violent equilibria
- Welfare analysis based on security of claims to property
Findings

- Non-violence possible if war is sufficiently wasteful or if defenses are sufficiently effective
- Welfare analysis depends on initial wealth
 - Rich benefit from more secure property
 - Poor may benefit from easier stealing
- Paradox of power—in a world where violence is possible, poorer people are relatively better off
Consider a one-period model of production and appropriation

- Two agents, 1 and 2
- Agents have respective endowments n_1 and n_2
- Each agent i can spend this endowment on three things:
 - Guns g_i, offensive weapons used for predation
 - Butter k_i, productive capital used to make consumable goods
 - Walls h_i, defensive weapons used against predation
Timing

- Time 1: Agents choose level of walls h_i
- Time 2: Agents choose gun level g_i and butter level k_i
 - All variables subject to nonnegativity constraints
- Time 3: Production occurs; agent i receives αk_i, where $\alpha > 0$.
- Time 4: Any part of endowment subject to appropriation by the other agent
 - Agent i retains p_i of his endowment, where
 \[
 p_i = \frac{1}{1 + x_i}, \quad x_i = \frac{\theta g_j}{h_i},
 \]
 where θ is an exogenous measure of offensive efficacy
 - Attacker j acquires $(1 - \beta)(1 - p_i)$ of i’s endowment, where β is an exogenous measure of the destructiveness of war
End result: agent i has final nonnegative wealth

$$m_i = p_i n_i + (1 - \beta)(1 - p_j)n_j$$ \hspace{1cm} (2)

- Objective: maximize sum of consumables and final wealth, denoted v_i, so

$$v_i = \alpha k_i + m_i$$ \hspace{1cm} (3)
Let’s Solve This!

Backwards induction: Start with guns/butter decision

- NB: attack inevitable if $g_i > 0$

Fix levels of h_i, h_j and note that $k_i = n_i - g_i - h_i$. Then take derivatives.

- We find that we either get an interior solution where

$$
\frac{\partial v_i}{\partial g_i} = -(1 - \beta) \frac{\partial p_j}{\partial g_i} n_j - \alpha = 0, \quad g_i > 0, \quad (4)
$$

or we get a corner solution where

$$
\frac{\partial v_i}{\partial g_i} = -(1 - \beta) \frac{\partial p_j}{\partial g_i} n_j - \alpha \leq 0, \quad g_i = 0. \quad (5)
$$
The Guns/Butter Decision

We can substitute for \(\frac{\partial p_j}{\partial g_i} \) to get

\[
g_i = \begin{cases}
\sqrt{(1 - \beta) \frac{h_j n_j}{\theta \alpha}} - \frac{h_j}{\theta} & \text{for } 0 < h_j < h_j^* \\
0 & \text{for } h_j \geq h_j^*,
\end{cases}
\]

where

\[h_j^* = (1 - \beta) \frac{\theta}{\alpha} n_j \]

We can look at \(h_j^* \) as the minimum investment in walls \(j \) has to make in order to deter \(i \) from attacking.
The Walls Decision

Now that we know how each player will act in Stage 2, we can look at Stage 1

- First, note from the previous guns/butter decision that as \(h_i \to 0 \),
 \[
 \frac{\partial v_i}{\partial h_i} \to \infty.
 \]
 - Spending nothing on walls allows \(j \) to steal everything with \(g_j = \epsilon \)

- Thus, we know that the \(h_i \geq 0 \) constraint isn’t binding

- Assuming that the \(h_i \leq n_i \) constraint isn’t binding either, we get an interior solution
 - Also means that marginal cost of walls is also \(\alpha \)
From before, we know that if \(h_j < h_j^* \), \(g_i \) is positive, but \(g_i = 0 \) otherwise.

If \(g_i = 0 \), then \(v_j \) is a decreasing linear function of \(h_j \).

Thus, \(v_j \) either has an interior maximum such that

\[
\frac{\partial v_j}{\partial h_j} = \left(\frac{\partial p_j}{\partial h_j} + \frac{\partial p_j}{\partial g_i} \frac{\partial g_i}{\partial h_j} \right) n_j - \alpha = 0, \quad \text{with} \ 0 < h_j < h_j^*,
\]

or we have a corner solution at \(h_j = h_j^* \) with

\[
\frac{\partial v_j}{\partial h_j} = \left(\frac{\partial p_j}{\partial h_j} + \frac{\partial p_j}{\partial g_i} \frac{\partial g_i}{\partial h_j} \right) n_j - \alpha > 0, \quad \text{for} \ h_j < h_j^*. \]
Substituting in expressions for $\frac{\partial p_j}{\partial h_j}$, $\frac{\partial p_j}{\partial g_i}$, and $\frac{\partial g_i}{\partial h_j}$, we get

$$h_j = \begin{cases} \frac{n_j}{4(1-\beta)\theta\alpha} < h_j^* & \text{for } 2(1-\beta)\theta > 1 \\ h_j^* = (1-\beta)\frac{\theta}{\alpha}n_j & \text{for } 2(1-\beta)\theta \leq 1 \end{cases}$$

(9)

But we have h_j decreasing in $(1-\beta)\theta$ for $h_j < h_j^*$

- What’s going on here?
Plugging the previous equation into the guns decision, we get

\[g_i = \begin{cases} \frac{1}{2\theta \alpha} \left(1 - \frac{1}{2(1-\beta)\theta}\right) n_j & \text{for } 2(1 - \beta)\theta > 1 \\ 0 & \text{for } 2(1 - \beta)\theta \leq 1 \end{cases} \]

(10)

Plugging this into our contest success function, we get that

\[p_j = p_i = p = \min \left[1, \frac{1}{2(1 - \beta)\theta} \right] \]

(11)

Thus, we have fully secure claims to property \((p = 1)\) iff \(2(1 - \beta)\theta \leq 1\)
The Cost of Appropriative Activities

Using our results, we can look at the cost of appropriative activities (both offensive and defensive)

- Allocating resources to either guns or walls takes away from productive capital
- Total cost of appropriation is \(\alpha(h_i + h_j + g_i + g_j) \) plus any losses due to conflict
 - This component is \(\beta(1 - p)(n_i + n_j) \)
- Thus we can express the total cost of appropriation relative to the total endowment as a quantity \(c \), where

\[
c = \frac{\alpha(h_i + h_j + g_i + g_j) + \beta(1 - p)(n_i + n_j)}{n_i + n_j}
\]
The Cost of Appropriative Activities

Plugging in our previous results, we get

\[c = \begin{cases}
\beta + \frac{1}{\theta} \left(1 - \frac{1+\theta}{4(1-\beta)\theta}\right) & \text{for } 2(1 - \beta)\theta > 1 \\
(1 - \beta)\theta & \text{for } 2(1 - \beta)\theta \leq 1
\end{cases} \quad (12) \]

Things to note:

- In nonaggressive equilibria, production losses come from allocating resources to walls
 - \(c \) is increasing in \(\theta \) and decreasing in \(\beta \)
- In equilibria with predation, these monotonic relations are lost
 - For \(p \) near 1, \(c \) is decreasing in \(p \)
 - For \(p \) far from 1, \(c \) approaches \(\beta \) as \(\theta \to \infty \)
Welfare Analysis

Similarly, we can get utility results in terms of the exogenous parameters by plugging in our g_i and h_i equations into our utility function and for m_i

$$v_i = \begin{cases}
(\alpha + 1)n_i - \left(1 - \frac{1}{4(1-\beta)\theta}\right)n_i \\
\quad + (1 - \beta) \left(1 - \frac{1}{2(1-\beta)\theta}\right)n_j \text{ for } 2(1 - \beta)\theta > 1 \\
(\alpha + 1)n_i - (1 - \beta)\theta n_i \text{ for } 2(1 - \beta)\theta \leq 1
\end{cases}$$ (13)
For nonaggressive equilibria, we get that v_i is decreasing in θ and increasing in β

For aggressive equilibria, things are more complicated

- No monotone relations to β or θ
- Depends on wealth of other player as well as one’s own
- For relatively rich players, ($n_i > n_j$), welfare always higher with lower θ and higher β
- But not so for relatively poor players!
 - With large θ and small β, a relatively poor agent’s utility is increasing in θ and decreasing in β
Relative Utilities

For nonaggressive equilibria, relative utilities $\frac{v_i}{n_i}$ and $\frac{v_j}{n_j}$ are equal

$$\frac{v_i}{n_i} = (\alpha + 1) - (1 - \beta)\theta = \frac{v_j}{n_j}$$

For aggressive equilibria, the poor get higher utility relative to their endowments. It’s increasing in the other person’s wealth.

- This gets us Hirshleifer’s paradox of power
Wrapup

- Can get either aggressive or nonaggressive equilibria depending on the efficacy of theft
- Cost/Welfare analysis straightforward for nonaggressive equilibria
 - Utility relative to wealth constant
 - Welfare increasing as theft becomes less attractive
- Analysis more complicated in aggressive models
 - Rich players like more secure claims to property
 - Poor players can appreciate the ability to steal effectively from their rich counterparts
Extending to Multiple Periods

Grossman and Kim (1996) extend this model to a multi-period dynastic model with one possible predatory agent and his prey

- Alterations/Restrictions:
 - Predator gets subscript \(a \), Prey gets subscript \(d \), everything gets a time superscript
 - Quantities \(g^t_d = h^t_a = 0 \)
 - Conflict outcome function now

\[
p^t = \begin{cases}
1 - x^t & \text{for } 0 \leq x^t < 1 \\
0 & \text{for } x^t \geq 1,
\end{cases} \tag{14}
\]

where \(x^t = \theta \frac{g^t_a}{h^t_d} \)

- Predator observes all of Prey’s actions before making decisions
Agents allocate between productive capital, allocative capital, and consumption (denoted c_i^t)

- Agents care about their consumption and their bequest to next generation. Thus agent i’s utility is given by

$$v_i^t = u_i(c_i^t) + z_i(n_{i}^{t+1}),$$ \hspace{1cm} (15)

where both u and z are increasing and concave

- If there is thievery on the part of Predator, then that gets factored into the next generation’s endowment

$$n_{a}^{t+1} = \alpha k_{a}^t + (1 - \beta)(1 - p^t)\alpha k_{d}^t$$ \hspace{1cm} (16)

- Prey’s bequest is simply what Predator doesn’t steal

$$n_{d}^{t+1} = p^t \alpha k_{d}^t$$ \hspace{1cm} (17)
Predator Behavior

Predator can either invest in productive capital to build his bequest or steal capital from Prey

- Both Prey’s defenses and his capital are known to Predator
- Effects of both investment and theft on bequest are constant

Investment: α

Theft: $(1 - \beta) \frac{\theta}{h_d^t} \alpha k_d^t$

- We can determine our threshold level of h_d^t as $(1 - \beta) \theta k_d^t$
Predator Behavior

Predator will take an all-or-nothing approach to this business

- If $h_d^t < (1 - \beta)\theta k_d^t$, then

 $$ k_a^t = 0, \quad g_a^t = n_a^t - c_a^t, $$

 and c_a^t is chosen such that

 $$ \frac{\partial v_a^t}{\partial c_a^t} = u'_a(c_a^t) - (1 - \beta)\frac{\theta}{h_d^t} \alpha k_d^t z'_a(n_{a+1}^t) = 0 $$

 (19)

- If $h_d^t \geq (1 - \beta)\theta k_d^t$, then

 $$ k_a^t = n_a^t - c_a^t, \quad g_a^t = 0, $$

 and c_a^t is chosen such that

 $$ \frac{\partial v_a^t}{\partial c_a^t} = u'_a(c_a^t) - \alpha z'_a(n_{a+1}^t) = 0 $$

 (21)
We can determine that Prey’s utility has one or two local maxima

- Utility is always locally maximized where Predator is barely deterred, that is

\[h_d^t = (1 - \beta) \theta k_d^t \]
\[\frac{\partial v_d^t}{\partial c_d^t} = u'_d(c_d^t) - \frac{\alpha}{1 + (1 - \beta) \theta} z'_d(n_d^{t+1}) = 0 \]
\[k_d^t = n_d^t - c_d^t - h_d^t \]
Prey Behavior

Prey may also elect to allow some predation. This requires a local maximum such that

\[
\frac{\partial v_d^t}{\partial h_d^t} = \left(-p^t \alpha + \frac{\partial p^t}{\partial h_d^t} \alpha k_d^t \right) z_d'(p^t \alpha k_d^t) = 0, \tag{25}
\]

and

\[
\theta c_a^t < h_d^t < (1 - \beta) \theta k_d^t
\]

\[
\frac{\partial v_d^t}{\partial c_d^t} = u_d'(c_d^t) - p^t \alpha z_d'(p^t \alpha k_d^t) = 0 \tag{26}
\]

\[
k_d^t = n_d^t - c_d^t - h_d^t, \tag{27}
\]

where \(c_a^t \) is the optimal level of consumption determined by Predator.
Basic Dynamics

Prey may tolerate some predation for a very poor Predator

- Limited resources means that Predator can only steal so much

As Predator gets richer, however, Prey would lose too much from appeasement and goes on to deterrence

- Limited window for which allowing predation is feasible
 - Size of this window is decreasing in c_a^t
 - Predator’s consumption is increasing in his endowment for most utility functions

- Thus, the toleration/deterrence decision is determined by the relative wealth levels of each player
Toleration/Deterrence

Predator dynasty grows weakly faster than prey dynasty

- If θ is zero, then neither agent allocates resources to weaponry, and each grows at the same constant rate r (under log utility, $\frac{\alpha}{2}$).
- With positive θ, Prey decides to allocate some resources to defense, lowering the rate of capital growth.
 - If Prey decides to tolerate theft, then Predator accumulates capital at a rate greater than r.
 - If Prey decides to deter theft, then Predator accumulates capital at rate r.
- If someone in the Prey dynasty tolerates theft, then a later member will deter it.
Predator has two forms of capital accumulation technology—investment and theft

- Prey may tolerate theft if complete deterrence is excessive
- Theft leads to wealth gap closing, and theft becomes more costly for Prey to allow
- Result: eventual deterrence of theft
Take-Away Points

One-period model:
- Peace is possible if efficacy of attacking is low enough and destruction from war is high enough
- Peaceful equilibria give more utility to richer people
- In aggressive equilibria, poorer agents may enjoy less secure claims to property

Dynamic model:
- Theft allowable if predatory agent is weak enough
- Predator gets too strong to tolerate eventually; deterrence by the defensive agent is inevitable
• Presents realistic addition to standard guns-and-butter framework
• Calculations yield intuitive results
• Additional extension: more than two agents
 • Possibility of subsets of agents being nonaggressive towards one another
 • Main issue: finding characteristics of nonaggressive subsets of agents